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1. Introduction

It is widely recognized that the exact solutions of field equations play an important role

in analyzing the properties of the field theory even in the framework of a quantum theory.

Getting solutions of the equation of motion in a systematic way is important, especially

in the case of non-Abelian gauge theory or gauge coupled Higgs theory. Because existence

of the effect of the couplings even for the ground state is indispensable to understand the

significant properties of the theory such as symmetry breaking or confinement. Although

the classical solutions of the gauge theory were examined in various models, the topological

solitons are particularly interesting from a point of view of the systematic construction

of solutions.

The stability of such a solution is guaranteed by the topological properties of soliton.

The field equations of non-Abelian gauge theory or of gauge coupled Higgs model are

nonlinear second order differential equations, which are not integrable in general. However,

there exist the first order equations, solutions of which automatically solve the second

order field equations, and these solutions have the properties of topological soliton. Such a

topological soliton equation is known as instanton equation for the Yang-Mills theory in R4

or BPS(Bogomol’nyi-Prasad-Sommerfield) equation in the case of non-Abelian monopole

in R3 [1].

The instanton equation for the Yang-Mills theory in 4 dimensional Euclidean space

R4 is nothing but the self-duality equation for the field strength. The BPS equation in

3 dimensional space describes the static non-Abelian monopole of the Yang-Mills-Higgs

theory, that is called BPS monopole, in the limit of vanishing Higgs coupling. The BPS

monopole equation can be derived as a reduction of the self-dual Yang-Mills equation.

Although other topological solitons in the gauge theory are also known, those have a lot

of common properties. Generally, these solutions are called BPS solitons and the first

order equations, to which they obey, are called BPS equations. One of the features of BPS
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equation which should be remarked is that we can minimize the Euclidean action or the

energy integral by completing the square with these first order equations. The self-duality,

although it changes its form in various cases, is inherent as the common property.

The ADHM (Atiyah-Drinfeld-Hitchin-Manin) construction of instantons is one of the

most fruitful methods to obtain a soliton solution for the gauge theory [2]. This method

translates the instanton moduli space, which is an information of the solutions of the self-

dual Yang-Mills equation, into the space of the solutions of the algebraic equation ( called

hereafter ADHM equation). The BPS monopoles are obtained by the similar method which

was proposed by Nahm [3]. In this case, the monopole moduli are determined by solving

the first order ordinary differential equation (called Nahm equation).

In the recent decade, we have had a glimpse of new aspect of the ADHM/Nahm method.

It was an interpretation as a configuration of D-branes. For example, the composite system

of N D4-branes with k D0-branes can be seen as a configuration of k instantons for U(N)

gauge theory in 4 dimensional space identified with the bundle of the D4-branes. In this

case, the self-dual Yang-Mills equation and the ADHM equation are the conditions for

supersymmetry in D4-brane and D0-brane respectively. In the case of monopoles, the

system of N D3-branes with k D1-branes is interpreted as a configuration of k monopoles

for U(N) gauge theory in 3 dimensions. The BPS equation and the Nahm equation are

the SUSY conditions in D3-brane and D1-brane respectively. Here, in place of self-duality,

a central role is played by supersymmetry.

During the last half of this decade, there appeared a new family of solitons, that is

a non-Abelian vortex, adapted to the D-brane construction method of moduli [4]. The

D-brane interpretation for the vortices can be given by the configuration that consists of

N D3-branes suspended between two parallel NS5-branes. As a result of study in this

direction, it has been pointed out that there seems to be close relationship between the

moduli space of vortices and the moduli space of instantons. The vortex moduli space, in

fact, involves half the elements of the ADHM construction and obeys the relation similar to

the ADHM condition. Although these results were surely provided by a viewpoint of the D-

brane and its supersymmetry, we do not understand the vortex moduli and the relation to

the ADHM from a viewpoint of the field theory. The ADHM method allows us to construct

the solutions to the self-dual Yang-Mills equation in a systematic way. It is interesting to

look for a “self-duality” in the case of the vortex described by the “half-ADHM”[5].

We cast some light on the notion of self-duality of the vortex to understand the relation

with the instanton. While the instanton equation expressed a self-duality for the Hodge

operator, the vortex equation seems to have no more relation with the self-duality than

that of being a first order BPS equation. Actually, we understand that this equation

does express a self-duality by assuming appropriate space structure. We show that the

non-Abelian vortex is nothing but the instanton in R2 × Z2 space from the viewpoint of

noncommutative differential geometry and gauge theory in discrete space [6 – 9]. Such an

idea has been once proposed by Teo-Ting in the case of abelian model [10]. Here we adapt

this method to the case of non-Abelian vortex as an extension. Then we clarified the

reasons why many similarities are found in the methods for constructing the moduli of

instanton and vortex.
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The constituents of this article are as follows. In section 2, we summarize some prop-

erties of the vortex. In section 3, we explain differential geometry and gauge theory in

discrete noncommutative space. In section 4, we show the fact that the non-Abelian vor-

tices in R2 can be considered as the instantons in R2 × Z2. Section 5 is assigned to the

discussions.

2. Non-Abelian vortex and self-dual BPS equation

The vortex is a static solution of the Yang-Mills-Higgs system with a translational symme-

try in one direction [11]. The configuration of the multi vortices consist of the individual

elements with an axial symmetry around itself. We can consider the vortex in the cross

section that is perpendicular to its axis. For example, we look upon the vortex in 3 + 1

dimensions as a model in 2 + 1 dimensions. From this viewpoint, the static vortex can be

seen as a soliton solution in the 2 dimensional Euclidean space.

Let us summarize some properties of the vortex solution for Abelian Higgs model [12 –

14]. The Lagrangian of Abelian Higgs model in 2 + 1 dimensions is given by

L =
1

4
FµνFµν +DµφD

µφ+
λ

2
(|φ|2 − c)2 . (2.1)

It is known that there are topologically stable static solutions in this model in the case

of λ = 1. Such static solutions called vortices are the configurations which minimize the

energy integral

E =

∫

R2

d2x

(

1

2
|F12|

2 + |D1φ|
2 + |D2φ|

2 +
1

2
(|φ|2 − c)2

)

, (2.2)

by satisfying the BPS equations

iF12 ±
(

|φ|2 − c
)

= 0 , (2.3)

(D1 ± iD2)φ = 0 .

The equations are often called vortex equations. We can also regard the energy integral

of the model in 2 + 1 dimensional space-time as an action of the Euclidean version of a

theory in 1 + 1 dimensions. In such a case, the solutions of the BPS equations which give

a minimum of the Euclidean action are also called vortices in 2 dimensional space.

In order to obtain the finite energy, it is necessary for these solutions to satisfy the

boundary conditions

|φ|2 → c, Dφ→ 0,

F12 → 0 (2.4)

at |x| → ∞ the spacial infinity which is identified with a circle S1. This means that

only pure gauge configurations are allowed at the spacial infinity. Therefore, the global

properties of the solutions of the vortex equation are classified by the first homotopy group

π1 (U (1)) = Z , (2.5)
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representing the topological mapping index for S1 → U (1) . The integers corresponding to

the elements of this homotopy group are given by

i

2π

∫

dx1dx2F12 = 0,±1,±2, · · · . (2.6)

This is nothing but the first Chern character of U (1) gauge field and is the topological

charge of the solutions called vortex number.

The model can be extended to the Yang-Mills-Higgs model which has non-Abelian

gauge symmetry. Here we consider a U (NC) gauge group. Generally, we can also extend

the model to have a flavor symmetry among NF Higgs fields. In this case, the energy

integral is of the form

E =

∫

dx1dx2Tr

(

1

2
|F12|

2 + |D1H|2 + |D2H|2 +
1

2

(

HH† − c1NC

)2
)

(2.7)

provided by the Lagrangian in 2 + 1 dimensions

L = Tr

(

1

4
FµνFµν + (DµH)†DµH +

1

2
(HH† − c1NC

)2
)

. (2.8)

Where, we define a covariant derivative Dµ and a field strength Fµν as

Dµ = ∂µ +Aµ, Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] , (2.9)

and Tr is a trace over the adjoint representation of U (NC) . It might be remarked that the

gauge field Aµ and the field strength Fµν are NC × NC anti-hermitian matrices and also

that the Higgs field H is represented by a NC × NF matrix which means an array of NF

fundamental Higgs of U (NC).

The energy can be transformed into the form

E =

∫

dx1dx2Tr

(

1

2

∣

∣

∣
iF12 ±

(

HH† − c1NC

)∣

∣

∣

2
+ |(D1 ± iD2)H|2

)

± i

∫

dx1dx2TrF12 ,

(2.10)

omitting a surface integral which has no affect on account of the boundary conditions. The

BPS equations minimizing the energy are

iF12 ±
(

HH† − c1NC

)

= 0 ,

(D1 ± iD2)H = 0 , (2.11)

in this case. These equations also have topologically stable solutions in a similar way as

in the Abelian case, which we call non-Abelian vortices [4, 5]. It is also obvious that

pure gauge configurations are allowed at the spacial infinity |x| → ∞. It means that the

topological property of the non-Abelian vortices is classified by the mapping index for S1 →

U (NC) . On account of the fact that U (NC) is equal to U (1)×SU (NC), the corresponding

homotopy group is

π1 (U (NC)) = π1 (U (1)) = Z (2.12)
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whose elements are integers and are identified as vortex numbers given by

i

2π

∫

dx1dx2TrF12 = 0,±1,±2, · · · . (2.13)

Although this model has the local U (NC) gauge symmetry and the global SU (NF )

flavor symmetry, there occurs the symmetry breaking due to the existence of the Higgs

potential. The vacuum of the theory has completely broken symmetries and there appear

vortex solutions, provided that NF ≥ NC . In the case of NF = NC , these solutions are

called local vortices and are expressed in terms of the moduli corresponding to positions

besides internal symmetries. On the other hand, the solutions in case of NF > NC are

called semilocal vortices and require the moduli corresponding not only to the position but

also to the size and orientation.

Provided that z ≡ x1+ix2 is a complex coordinate for the 2 dimensional space R2, then

the solutions of the BPS equations are determined in general by the NC×NF matrix H0 (z)

which has elements consisting of holomorphic functions of z [5]. Here, H0 is usually called

a moduli matrix for the vortices and we can represent any solution of BPS equations by

means of H0 as follows. Let us introduce a NC×NC invertible matrix S (z, z̄) ∈ GL (NC ,C)

and consider a gauge invariant quantity defined by Ω (z, z̄) ≡ S (z, z̄)S† (z, z̄). Then the

Higgs and gauge fields should be written as

H = S−1H0 ,

A1 + iA2 = 2S−1∂̄zS . (2.14)

Actually, the first set of BPS equations could be solved for arbitrary S on account of these

relations. And the second set of the BPS equations is written in the form of

∂z

(

Ω−1∂̄zΩ
)

=
1

2

(

Ω−1H0H
†
0 − c1NC

)

. (2.15)

This equation is called master equation for the vortices and has a unique solution Ω for

any given H0. Here, S is determined except for the gauge degrees of freedom and some

ambiguities of decomposition. As a result, we can find H and Ai which solve the BPS

equation on account of the relations given above.

Let us consider the case of local vortex with NF = NC ≡ N . The moduli matrix H0 (z)

becomes a N ×N matrix and it can be shown that the vortex number is given by [5]

k =
1

2π
Im

∮

dz∂z log (detH0) . (2.16)

This representation for the topological charge makes it clear that H0 behaves like detH0 ∼

zk at the spacial infinity |x| → ∞. This agrees with the fact that the dimensions of the

vortex moduli space is equal to 2kN known from the index theorem. It is known that

the moduli space is constructed by the method which is called Kähler quotient, and is

represented as

{Z,Ψ} //GL (k,C) ≃
{

(Z,ψ) |
[

Z†, Z
]

+ ψ†ψ ∝ 1k

}

/U (k) , (2.17)
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where Z and ψ are k×k and N×k matrices respectively [4, 5]. This method to construct the

vortex moduli extremely resembles the ADHM method to construct the instanton moduli

and it is called half ADHM. It has not been clear why the moduli spaces of the vortex and

the instanton are constructed by such similar methods. In the following sections, we will

show that the non-Abelian vortex is equivalent to the instanton in R2 × Z2.

3. Gauge theory in noncommutative discrete space

In order to make transparent the construction of the theory, we shall survey the method

of representing the gauge theory in the noncommutative space in term of differential forms

for the matrices. We propose that the gauge field is an extended differential (p + q)-form

on M × Z2 space consisting of the (p, q)-forms on M and Z2 respectively.

Let us consider discrete two point space Z2 which has noncommutative nature in dif-

ferential calculus [6 – 10]. We employ matrices as machineries representing such a structure

and consider 2×2 matrices as differential forms in Z2 space. Then we introduce Z2−grading

corresponding to the parity with respect to the degrees of differential forms. Where, the

matrices with diagonal elements have even parity and the matrices with anti-diagonal ele-

ments have odd parity.

In general, 2 × 2 matrix

a =

(

a11 a12

a21 a22

)

(3.1)

should be interpreted as a mixed differential form consisting of different degrees of forms,

which could be decomposed as a = ae + ao,

ae =

(

a11 0

0 a22

)

, ao =

(

0 a12

a21 0

)

. (3.2)

We represent the Z2−parities of forms as [ae] = 0 and [ao] = 1 for even and odd matrices

respectively. The wedge product among the differential forms is to be assumed as that of

the matrices.

The exterior derivative operator d acting on the differential forms in Z2 space is

defined as

d = i [η, } , (3.3)

where [α, β} is the graded commutator representing

[α, β} = αβ − (−1)[α][β] βα (3.4)

and η is an odd parity matrix with the property

η2 = 1 . (3.5)

Then, the action of d on arbitrary matrix differential form α is

dα = i [η, α} = i
(

ηα− (−1)[α] αη
)

. (3.6)

– 6 –
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This leads to the result

d2α = − [η, [η, α}} =
1

2
[α, [η, η}} = 0 , (3.7)

where we use the relation

2 [η, [η, α}} + [α, [η, η}} = 0 (3.8)

derived from the graded Jacobi identity

(−1)[A][C] [A, [B,C}} + (−1)[A][B] [B, [C,A}} + (−1)[C][B] [C, [A,B}} = 0 (3.9)

and the fact that η2 = 1. Then we can consider d itself as nilpotent

d2 = 0 , (3.10)

which means that d plays a role of an exterior derivative operator as it is a linear operator

with odd parity and has the nilpotency. The graded Leipniz’s rule

d (α ∧ β) = dα ∧ β + (−1)[α] α ∧ dβ (3.11)

is one of the desirable properties.

Although we may employ the form of

η = ηγ = cos γτ1 + sin γτ2 =

(

0 e−iγ

eiγ 0

)

, (3.12)

as η in general, it is convenient to adopt

η = η0 =

(

0 1

1 0

)

= τ1 (3.13)

to make calculations clear without loss of generality. We shall follow this definition in this

paper for simplicity, then we see that the action of d on the matrix a results

da = i [η, ae] + i {η, ao} = i

(

a21 + a12 a22 − a11

a11 − a22 a21 + a12

)

. (3.14)

Let us consider the differential forms in an extended space M × Z2 with M an ordi-

nary manifold. These are represented by 2 × 2 matrices whose elements are consisting of

differential forms in M . For example, if we consider the extended differential forms

M =

(

A C

D B

)

, M′ =

(

A′ C ′

D′ B′

)

, (3.15)

then the wedge product of these is a product of two matrices accounting the signature of

grading as follows

M∧M′ =

(

A ∧A′ + (−1)[C]C ∧D′ (−1)[A]A ∧ C ′ + C ∧B′

D ∧A′ + (−1)[B]B ∧D′ (−1)[D]D ∧ C ′ +B ∧B′

)

. (3.16)
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Here, [A] stands for the Z2−parity of degree of the differential form A. The rule for the

wedge product given above means that Z2−parity of the differential forms in M should be

identified with that of the 2 × 2 matrices in Z2.

The arbitrary matrix M is represented as

M = eij ⊗Mij , (3.17)

provided that the basis of 2 × 2 matrices are assigned as

e00 =

(

1 0

0 0

)

, e01 =

(

0 1

0 0

)

, e10 =

(

0 0

1 0

)

, e11 =

(

0 0

0 1

)

, (3.18)

with the Z2−parity [e00] = [e11] = 0 (even) , [e01] = [e10] = 1 (odd) . Here we employ

a representation in terms of the direct product. And keep a convention that the basis of

2 × 2 matrix forms should be located on the left of the ordinary differential forms. Then

the wedge product of the two matrix differential forms M and M′ is calculated as

M∧M′ = (eij ⊗Mij) ∧
(

ekl ⊗M′
kl

)

= (eij ekl) ⊗
(

(−1)[Mij ][ekl] Mij ∧M′
kl

)

= (δjk eil) ⊗
(

(−1)[Mij ][ekl] Mij ∧M′
kl

)

= eil ⊗
(

(−1)[Mij ][ejl]Mij ∧M′
jl

)

. (3.19)

It is worth to be remarked that the same sign rule

α∧β = (−1)[α][β] β ∧ α (3.20)

should be applied when we exchange the order between the basis of matrix differential

forms and the ordinary differential forms. There exists similar idea to define the hermitian

conjugate of the graded matrix differential form. It is defined by

M† =

(

A† (−1)[D]D†

(−1)[C]C† B†

)

(3.21)

for M given above.

To make the difference clear, let us use the symbols dH and dV to represent the exterior

derivative operators on M (horizontal) and Z2 (vertical) spaces respectively. That is to say,

dH represents the exterior derivative operator acting on the ordinary differential forms and

dV represents the exterior derivative on the matrix differential forms. If we identify the

Z2−parity of the matrix differential forms with that of the ordinary differential forms, then

we can agree that the operators dH and dV anti-commute with each other

dHdV = −dV dH . (3.22)

Thus, we consider the exterior derivative operator acting on the generalized differential

form in M × Z2

d = dH + dV (3.23)

– 8 –
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which satisfies the nilpotency as

d
2 = d2

H + dHdV + dV dH + d2
V = 0 . (3.24)

The explicit action of d on the matrix differential form M is

dM = dHM + dV M

=

(

dA −dC

−dD dB

)

+ i

[

η,

(

A 0

0 B

)]

+ i

{

η,

(

0 C

D 0

)}

=

(

dA+ i (C +D) −dC − i (A−B)

−dD + i (A−B) dB + i (C +D)

)

, (3.25)

where we simply write d in place of dH when its role is manifest.

Actually, we can assign not only the Z2−parity but also the degree to matrix differ-

ential forms in Z2 space. In general, 2 × 2 matrix can be expanded in terms of the basis

(1, τ1, τ2, τ3) with Pauli matrices τi ’s. These bases are classified into the even basis (1, τ3)

and odd one (τ1, τ2) . It is natural to consider 1 as a basis of 0-form and (τ1, τ2) as basis of

1-form according to their Z2−parity. The basis of 1-form is often written as (θ1, θ2). Then

the basis of 2-form can be obtained by

θ1 ∧ θ2 = τ1τ2 = iτ3 . (3.26)

The 2 × 2 matrix M is expanded as

M =

(

A C

D B

)

= 1 ⊗
A+B

2
+ τ1 ⊗

C +D

2
+ τ2 ⊗

i (C −D)

2
+ τ3 ⊗

A−B

2
, (3.27)

then we can interpret these terms as different degrees of forms in Z2 space.

We can define a gauge theory in M ×Z2 in terms of the matrix differential forms. Let

us consider a gauge field as a connection 1-form in M × Z2 space in the form of

A =

(

L iϕ

iϕ† R

)

, (3.28)

where L,R and ϕ are Lie-algebra valued 1-forms and 0-form on M respectively. It should

be remarked that L and R are anti-hermitian and ϕ is complex. Let our model be that

consisting of L,R,ϕ with value on N × N matrices. It means that the model has the

U (N)L × U (N)R gauge symmetry. The connection form is expanded as

A = A(1,0)+A(1,2)+A(0,1), (3.29)

where

A(1,0) = 1⊗
L+R

2
,

A(1,2) = τ3 ⊗
L−R

2
,

A(0,1) = τ1 ⊗
ϕ+ ϕ†

2
+ τ2 ⊗

i
(

ϕ− ϕ†
)

2
. (3.30)
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We use the notation A(p,q) to represent a form that behaves itself as a p-form in M and as

a matrix q-form in Z2 , that is, a (p+ q)-form in M × Z2 space as a whole.

The field strength F derived from the gauge field A is defined by

F = dA + A∧A (3.31)

or

F =

(

dL+ L ∧ L− ϕϕ† −
(

ϕ+ ϕ†
)

−i (dϕ+ (Lϕ− ϕR) + (L−R))

−id
(

dϕ† −
(

ϕ†L−Rϕ†
)

− (L−R)
)

dR +R ∧R− ϕ†ϕ−
(

ϕ+ ϕ†
)

)

=

(

FL −WL −iDφ

−i (Dφ)† FR −WR

)

(3.32)

in components. Where, FL and FR are field strengths of the gauge fields L and R on the

manifold M ,

FL = dL+ L ∧ L ,

FR = dR+R ∧R . (3.33)

D is a covariant derivative with respect to both L and R ,

Dφ = dφ+ Lφ− φR , (3.34)

provided that L and R act from the left and right respectively. φ is defined by

φ = ϕ+ 1N , (3.35)

then WL and WR are defined by

WL (φ) = (ϕ+ 1N )
(

ϕ† + 1N

)

− 1N = φφ† − 1N ,

WR (φ) =
(

ϕ† + 1N

)

(ϕ+ 1N ) − 1N = φ†φ− 1N . (3.36)

As we shall see in the following section, Higgs potential V (φ) can be given by WL and

WR as

V (φ) = Tr
(

WL
)2

= Tr
(

WR
)2

= Tr
(

φφ† − 1N

)2
= Tr

(

φ†φ− 1N

)2
, (3.37)

where Tr is a trace over the representation matrix of Lie-algebra. It means that φ is the

Higgs filed and that ϕ is its fluctuation around the vacuum expectation value 1N .

There exists an appropriate definition of the Hodge dual ∗F of F and a definition of

volume integral of norm square of F on M × Z2 space, that is

Tr

∫

M×Z2

〈F ,F〉 = Tr

∫

M×Z2

F ∧∗ F . (3.38)
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The action of the gauge theory is nothing but this integral and we have

S =
1

2
Tr

∫

M×Z2

F ∧∗ F

=Tr

∫

M

(

1

2

∣

∣FL
12

∣

∣

2
+

1

2

∣

∣FR
12

∣

∣

2
+
(

φφ† − 1N

)2
+ |D1φ|

2 + |D2φ|
2

)

dx1 ∧ dx2 ∧ · · · ∧ dxn

(3.39)

as a result. The concrete definition of Hodge duality is necessary to express the Yang-Mills

action by means of the inner product among the differential forms on the noncommutative

space. The derivation of the above action with the definite form of Hodge duality will be

explained in some detail in the next section.

This action is that of the Yang-Mills-Higgs model, which consists of the kinetic terms

of the Yang-Mills gauge field and the Higgs field. This means that pure Yang-Mills gauge

theory in M ×Z2 is equivalent to the Yang-Mills-Higgs theory in M which is automatically

incorporated in the mechanism of spontaneous symmetry breaking in natural way.

Let us think of the case of N = 1 that is abelian gauge theory for simplicity, we see

that the combination of L+R becomes massive and L−R remains massless. That is to say,

this is a model of the Higgs mechanism which breaks a gauge symmetry U (1)L × U (1)R
to U (1)L−R. If we adapt this machinery to the standard model, it would be suitable to

assign U (2)L × U (1)R as a gauge group, with total trace free condition.

In this construction, we can understand that the Higgs field is included as a kind of

gauge field by generalizing the gauge theory to the space with discrete and noncommutative

geometry. Then this method leads to the Higgs mechanism and spontaneous symmetry

breaking naturally, which is nothing but the gauge theory itself. There has been many

explicit applications of this idea to reconstruct standard model [6 – 8].

4. Non-abelian vortex on R
2 as instanton on R

2
× Z2

The idea of Hodge duality plays a crucial role in understanding the relation of instantons

and vortices. Actually, to interpret the non-Abelian vortex on R2 as an instanton on R2 ×

Z2, the concept of Hodge duality for the matrix differential forms on the noncommutative

space has to be defined. This concept, which seems to be not necessarily well defined in

the literature, is indispensable.

In this section, we have worked out the concrete definition of Hodge duality. Based

on this, we have expressed the Yang-Mills action, which we have explained in the previous

section, on the noncommutative space in terms of the Hodge dual operation. Furthermore

under the operation of the Hodge dual, we describe the instanton equation on R2 × Z2,

and reveal the fact that it is equivalent to the vortex equation on R2.

The general p-form in the ordinary manifold M can be written as

α =
1

p!
αµ1µ2···µpdx

µ1 ∧ dxµ2 ∧ · · · ∧ dxµp (4.1)

in terms of the basis dxµ of the covariant vectors which span the cotangent vector bundle

T ∗ (M). One can also introduce the dual basis
∂

∂xµ
to dxµ , that is, the basis of the
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contravariant vectors which span the tangent vector bundle T (M) of the manifold M . The

inner product among the basis and dual one is defined to satisfy the relation

〈

dxµ,
∂

∂xν

〉

= δµ
ν . (4.2)

The Hodge dual operation ∗ is defined so as to transfer the inner product of α and β

to the wedge product of α and ∗β

〈α, β〉 dx1 ∧ dx2 ∧ · · · ∧ dxn = α ∧ ∗β . (4.3)

Let us define the explicit correspondence in terms of the Hodge dual of the forms in R2 as

follows. The Hodge dual of the 2-form F , 1-form V and 0-form W ,

F =
1

2
Fijdx

i ∧ dxj ,

V = Vidx
i , (4.4)

are given by the 0-form ∗F , 1-form ∗V and 2-form ∗W ,

∗F =
1

2
εjiFij = −F12 ,

∗V = εijVjdx
i ,

∗W =
1

2
εijWdxi ∧ dxj , (4.5)

respectively. As a result of the definition given above, we see that ∗∗ = −1 for the forms

of arbitrary degrees. This means that our definition results in ∗∗ = 1 when it is extended

to the case of 4 dimensional space R4 with Euclidean signature.

As the eigen values of the Hodge duality operator ∗ in R4 are ±1, we can define the

(anti-)selfdual 2-form F+ (F−) by

F± = F ± ∗ F (4.6)

which are the eigen states of the operator ∗

∗F± = ±F± (4.7)

with respect to an arbitrary 2-form F in R4 .

On the other hand, the eigen values of the Hodge duality operator ∗ in R2 are ±i.

Then we can define the (anti-)selfdual 1-form V+ (V−) by

V± = V ∓ i∗V (4.8)

which are the eigen states of the operator ∗

∗V± = ±iV± (4.9)
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with respect to an arbitrary 1-form V in R2. V± has the components V± = ((V±)1 , (V±)2)

(V±)1 = V1 ∓ iV2 ,

(V±)2 = V2 ± iV1 = ±i (V1 ∓ iV2) = ±i (V±)1 , (4.10)

with V = (V1, V2) .

Let us consider the case of the matrix differential forms. As the basis θa of the covariant

vectors are represented by the matrices, the dual basis or the contravariant vectors ea which

satisfy the relation

〈θa, eb〉 = δa
b , (4.11)

are also represented by matrices. We can see that this inner product is the normalized

trace of such matrices. Actually in case of matrix differential forms in Z2, as we employ

the convention that the basis are represented by θ1 = τ1, θ
2 = τ2, the dual basis have the

same forms as themselves,

e1 = τ1, e2 = τ2. (4.12)

In this representation, the Hodge dual operation is equal to the multiplication by iτ3. This

operation maps the basis of the matrix 0, 1, 2-forms,
{

1,
(

θ1, θ2
)

, θ1 ∧ θ2
}

or {1, (τ1, τ2) , iτ3}

to the 2, 1, 0-forms,
{

θ1 ∧ θ2,
(

θ2,−θ1
)

,−1
}

or {iτ3, (τ2,−τ1) ,−1} . These results coincide

with that of the operation ∗ in R2 described above. Thus we can see that the Hodge dual

in R2 ×Z2 as a four-dimensional space is performed by the duality operation in R2 and Z2

at the same time. As a result, we obtain real values ±1 as the eigen values of the Hodge

duality operator in R2 × Z2, although those values are imaginary ±i in R2 and Z2.

Let us consider the pure Yang-Mills action in R2×Z2. The Hodge dual of field strength

2-form for the gauge field in R2 × Z2 is given by

∗F ≡ iτ3F (∗) . (4.13)

Here, we mean F (∗) the Hodge dual with respect to the forms in R2 as the components of

2 × 2 matrix F , whereas the Hodge dual with respect to the matrix differential forms in

Z2 is represented by the multiplication with iτ3 .

We could obtain the action for pure Yang-Mills theory on R2 × Z2 by integration of

the Lagrangian

L =
1

2
Tr 〈F ,F〉 =

1

2
TrF ∧∗ F (4.14)

over the volume of R2 × Z2. Although different degrees of forms coexist in F ∧∗ F , we

would pick up the volume form dx1 ∧ dx2 ∧ θ1 ∧ θ2 out of it. Accounting the fact that the

volume form θ1 ∧ θ2 of the Z2 space is equal to iτ3 in our convention, we have to take a

trace of L after multiplying by −iτ3 as a 2×2 matrix, in order to pick up the volume form.

Thus the volume integral
∫

Z2
( ) over the Z2 space is equivalent to − i

2 TrZ2
τ3 ( ) , where

TrZ2
represents a trace with respect to 2 × 2 matrix as a differential form in Z2 space. It

would be clear that the volume integral
∫

R2 ( ) over the R2 leaves 2-forms. As a results,
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we have the action in the form of

S = Tr

∫

R2×Z2

F ∧∗ F

=
1

2
Tr

∫

R2

TrZ2
τ3F ∧ τ3F (∗)

=
1

2
Tr

∫

R2

TrZ2
τ3

(

FL −WL −iDφ

−i (Dφ)† FR −WR

)

∧

(

∗
(

FL −WL
)

−i∗ (Dφ)

i∗ (Dφ)† −∗
(

FR −WR
)

)

=Tr

∫

R2

(

1

2

∣

∣FL
12

∣

∣

2
+

1

2

∣

∣FR
12

∣

∣

2
+
(

φφ† − 1N

)2
+ |D1φ|

2 + |D2φ|
2

)

dx1 ∧ dx2. (4.15)

Thus we can confirm the fact that the action for pure Yang-Mills theory in R2 × Z2 is

equivalent to the action for Yang-Mills-Higgs theory in R2.

We consider a model with U (N)L×U (N)R gauge symmetry, where the fields L,R and

ϕ are N ×N matrices in general. In order to obtain a model for the non-Abelian vortex

considered in ref’s [4, 5], it would be required to make an appropriate reduction, that is to

restrict the gauge group to U (N)L ×U (1)R. Then we combine U (1)R with U (1)L, that is

a subgroup of U (N)L, to obtain U (1)L−R and U (1)L+R, the latter of which is decoupled

from the other fields. If we discard the decoupled U (1), we have a model with U (N) gauge

symmetry, which describes local vortex. Our general model is considered as that with the

extension to have a local flavor symmetry, which should be frozen to become a global one.

Now, we shall show that the instanton on R2 × Z2 is equivalent to the vortex on R2.

The field strength “2-form” F of the gauge field on M4 = R2 × Z2 can be decomposed as

F = F (0,0) + F (2,0) + F (1,1) + F (0,2) + F (2,2), (4.16)

provided that the basis of 0, 1, 2-forms on Z2 are 1, (τ1, τ2) , iτ3 respectively, where

F (0,0) = 1⊗

(

−
WL +WR

2

)

,

F (2,0) = 1⊗

(

FL + FR

2

)

,

F (1,1) = −i

(

τ1 ⊗

(

Dφ+ (Dφ)†

2

)

+ τ2 ⊗ i

(

Dφ− (Dφ)†

2

))

,

F (0,2) = iτ3 ⊗ (−i)

(

−
WL −WR

2

)

,

F (2,2) = iτ3 ⊗ (−i)

(

FL − FR

2

)

. (4.17)

With respect to the total degrees, F should be understood as an mixed form consisting of

not only total 2-form F (2,0) + F (1,1) + F (0,2) but also 0-form F (0,0) and 4-form F (2,2).

The Hodge operator ∗ in R2 × Z2 transfers the field strength F into its dual ∗F ≡

iτ3F (∗) according to the definition in the previous section. As a result, the components of

F in the above decomposition are transferred as

F (p,q) → ∗F (2−p,2−q). (4.18)
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Then we can see that there is a correspondence not only between 2-form and dual 2-form

but also between 0-form and 4-form. The instanton equation for Yang-Mills gauge field in

4 dimensions is nothing but a requirement of (anti-)selfduality for the field strength 2-form,

∗F = ±F . (4.19)

For the case of the gauge field in R2 × Z2, the (anti-)selfdual Yang-Mills equation means

the correspondence of the form

∗F (p,q) = ±F (2−p,2−q), (4.20)

that is,

iτ3F
(p,q) (∗) = ±F (2−p,2−q), (4.21)

on account of nature of the Hodge operator for the matrix differential forms. This equation

is decomposed as follows in terms of the differential forms in R2

∗

(

FL + FR

2

)

= ± (−i)

(

−
WL −WR

2

)

(4.22)

for (p, q) = (2, 0) or (0, 2) ,

∗

(

−
WL +WR

2

)

= ± (−i)

(

FL − FR

2

)

(4.23)

for (p, q) = (0, 0) or (2, 2) , and

(iτ3)

(

τ1 ⊗
∗

(

Dφ+ (Dφ)†

2

)

+ τ2 ⊗ i ∗

(

Dφ− (Dφ)†

2

))

= ±

(

τ1 ⊗

(

Dφ+ (Dφ)†

2

)

+ τ2 ⊗ i

(

Dφ− (Dφ)†

2

))

(4.24)

for (p, q) = (1, 1). As a result, we have the (anti-)selfdual equations written as

iFL
12 ±WL = 0,

iFR
12 ∓WR = 0,

(D1 ± iD2)φ = 0, (4.25)

in components.

These equations can also be obtained by considering on the equal footing the dif-

ferential forms of different nature. Suppose the basis of 1-form in “4 dimensional” space

M4 = R2 ×Z2 to be dxµ (µ = 1, 2, 3, 4). Let us consider indices 1,2 to show ingredients of

basis of the 1-form in 2 dimensional continuous space R2 and index 3,4 to show those in

“2 dimensional” discrete space Z2. That means assigning

(

dx3, dx4
)

=
(

τ1, τ2
)

(4.26)
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besides the ordinary basis
(

dx1, dx2
)

. On account of these assignments, we can also obtain

the (anti-)selfdual Yang-Mills equations in the same way as the usual expression in terms

of the components.

This is a BPS equation expressing the non-Abelian vortex, so we have shown that an

instanton equation in R2 × Z2 was none other than the non-Abelian vortex equation in

R2. It can also be verified that the instanton number or a 2nd Chern character in R2 ×Z2

is just the vortex number in R2 as follows. Remember the volume integral over the Z2 is

equal to the trace after multiplication with − i
2τ3, then we have the relation

−Tr

∫

R2×Z2

F ∧ F =i

∫

R2

1

2
TrZ2

τ3F ∧ F = i

∫

R2

(

TrFL
12 − TrFR

12

)

dx1 ∧ dx2, (4.27)

which means that instanton number on R2 × Z2 is given by the difference between the

vortex numbers of two gauge fields on R2. Actually TrFL
12 and TrFR

12 have opposite sign,

when we consider non trivial vortex solutions. As a result, we have vortex number as an

instanton number in noncommutative discrete space.

5. Discussion

In this article, we have employed a matrix differential form to express differential geometry

of noncommutative discrete space. As has been described in this work, the non-Abelian

vortex in R2 is equivalent to the instanton on the R2 ×Z2. This suggests the possibility to

constitute non-Abelian vortex solution by the ADHM method. Actually, the moduli for the

non-Abelian vortices are described by the method that resembles ADHM which is named

“half ADHM”, though the explicit form of the solutions is not decided yet. The relation

between the instanton and the vortex that we reported in this article shows possibility to

clarify the reason why the half-ADHM method works.

In the usual ADHM method for instanton [15], we employ a quaternionic variables x

as a coordinate of 4 dimensional space R4. The ADHM data, that is, moduli parameters to

describe instantons, are included into the “0 dimensional Dirac operator” ∇ = Cx−D as its

coefficient matrices, C and D. We should solve the “Dirac equation” ∇†V = 0, in order to

determine the gauge connection in the form of A = V †dV with V which satisfies V †V = 1.

The condition for the field strength to be anti-selfdual is that ∇†∇ should be an invertible

matrix which consists of the real numbers although ∇ itself has quaternionic entities.

Although differential forms and the calculation rule among them are given in the case

of R2 × Z2 space, we do not know an exact expression for the coordinates in this space.

The operator ∇ therefore is not yet given which is a key issue to clarify how to construct

the ADHM in this case. It is suggested that there exists a mechanism analogous to ADHM

even if the exact expression of the coordinate is unidentified. For example, the gauge field

is given in the form of a kind of non-linear sigma models. If we tentatively assume that

the extension of the V in R2 to R2 × Z2 is given by

V =

(

VL 0

0 VR

)

, V †
LVL = 1, V †

RVR = 1 (5.1)
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with appropriate matrices VL and VR. Then the gauge connection becomes

A = V†dV =





V †
LdVL i

(

V †
LVR − 1

)

i
(

V †
RVL − 1

)

V †
RdVR



 . (5.2)

We can see that the gauge connection discussed in this article is obtained with

the assignment

L = V †
LdVL, R = V †

RdVR,

ϕ = V †
LVR − 1,

φ = V †
LVR. (5.3)

Therefore, we can complete the ADHM method, if we can introduce suitable

coordinate expression.

It is also natural to expect that the ADHM is applicable here on the ground that there

has been an analogy between the Yang equation for instanton and the master equation for

vortex. Let z ≡ x1 + ix2, w ≡ x3 + ix4 be complex coordinates in R4, then the instanton

equation, that is, the anti-selfdual Yang-Mills equation is equivalent to the Yang equation

∂z

(

J−1∂̄zJ
)

+ ∂w

(

J−1∂̄wJ
)

= 0 (5.4)

for the Yang’s potential J [16]. It is obvious that the master equation is the analog of the

Yang equation. The relations would be explained, if we can regard w as a coordinate of

the Z2 space and could assign appropriate expression to them.

Instanton equation in the usual space can be completely solved by the ADHM method.

As for the vortex equation on the other hand, although it can be rewritten as a master equa-

tion plus half-ADHM, the solution cannot be obtained because we are left with the master

equation. We consider however, that the difference can be attributed to the structure of Z2

space. And in order to understand the situation, we have to have the representation of not

only the differential forms but the representation of the coordinates. For the differential

forms, we are using the matrix representation, but the representation for the background

noncommutative coordinates should be considered separately. A construction method in

terms of the coordinate will appear in the work in preparation.

In this article, we have shown that the non-Abelian vortex in R2 is equivalent to the

instanton on R2 × Z2 space. It has been proposed in ref [17], that there exists similar

relation in the case of the model on compact Riemann surface Σ. They have shown that

the instanton on Σ × CP 1 can be considered as a non-Abelian vortex on Σ. It would be

interesting to examine the relations between our work and their approach.
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